
Recommending Differentiated Code to Support
Smart Contract Update

Yuan Huang1, Queping Kong1, Nan Jia3, Xiangping Chen2,∗, Zibin Zheng1

1National Engineering Research Center of Digital Life, School of Data and

Computer Science, Sun Yat-sen University, Guangzhou, China
2Guangdong Key Laboratory for Big Data Analysis and Simulation of Public Opinion,

School of Communication and Design, Sun Yat-sen University, Guangzhou, China
3School of Management Science and Engineering, Hebei GEO University, Shijiazhuang, China

Email: huangyjn@gmail.com kongqp@mail2.sysu.edu.cn jianan 0101@163.com {chenxp8,zhzibin}@mail.sysu.edu.cn

Abstract—Blockchain has attracted wide attention. A smart
contract is a program that runs on the blockchain, and there is
evidence that most of the smart contracts on the Ethereum are
highly similar, as they share lots of repetitive code. In this study,
we empirically study the repetitiveness of the smart contracts via
cluster analysis and try to extract the differentiated code from
the similar contracts. Differentiated code is defined as the source
code except the repeated ones in two similar smart contracts,
which usually illustrates how a software feature is implemented
or a programming issue is solved. Then, differentiated code might
be used to guide the update of a smart contract in its next
version. In this paper, to support the update of a target smart
contract, we apply syntax and semantic similarities to discover its
similar smart contracts from more than 120,000 smart contracts,
and recommend the differentiated code to the target smart
contract. The promising experimental results demonstrated the
differentiated code can effectively support smart contract update.

Keywords-Smart Contract, Differentiated Code, Contract Up-
date, Evolution Analysis, Code Retrieve

I. INTRODUCTION

Blockchain serves as a public ledger and transactions stored

in blockchain are nearly impossible to tamper [1]. Its purpose

is to solve the credit problems of both sides of the transaction

in a decentralized environment, which can greatly improve

transaction efficiency and reduce costs [2], [3]. Blockchain

technology allows to establish contracts using cryptography

and to replace third parties that have been necessary to estab-

lish trust in the past [4]. The smart contract is a computerized

transaction protocol that executes the terms of a contract [5].

With the increasing popularity of blockchain technology, smart

contracts are applied in various domains [6], [7], [8]: from

finance, game to healthcare.

The difficulty in implementing smart contracts is how legal

contracts can be expressed and written by programming lan-

guage. Low quality smart contracts may cause ambiguous def-

inition of rights and obligations, and become vulnerable. Loi

et al. discovered that 8,833 out of 19,366 existing Ethereum

contracts are vulnerable [9]. Smart contracts are executed

as transactions on the blockchain; the inputs, outputs and

the states of the contract are visible to the network. As a

result, smart contracts with security vulnerabilities may lead

∗ Corresponding author.

to financial losses. Famous attacks including selfish mining

attack [10] and DAO attack [8] have caused loss of million

dollars.

Some researchers noticed the difficulties in implementing

smart contracts and proposed to specify and model smart

contract before implementation [11], [12]. In this paper, we

observe that most of the smart contracts on the Ethereum are

highly similar, as they share lots of repetitive source code.

Meanwhile, we notice that “personalized code” exists between

the similar smart contracts, referred to as differentiated code.

Differentiated code is defined as the source code except the

repeated code in two similar contract smarts, which usually

illustrates how a software feature is implemented or a pro-

gramming issue is solved [13].

Therefore, the differentiated code in similar contract may

be used as a candidate implementation for the update of

another smart contract. The following example shows a smart

contract C1 using throw in its initial version, which may

cause additional gas consumption when exception throws.

By searching its similar smart contract, we can observe that

smart contract C2 uses an alternative function revert()
instead of throw, which can return the remaining gas to

the user when exception throws. Therefore, the differentiated

code revert() (i.e., red font in contract C2) can be used

to support the update of contract C1 when releasing a new

version.

Smart Contract C1: Smart Contract C2:
...
function () public payable {

throw;
}
...

...
function () public payable {

revert();
}
...

In this paper, we propose to use differentiated code to

support the smart contract update. For a target smart contract,

we firstly apply code syntactic and semantic similarities to

discover the similar smart contracts from more than 120,000

smart contracts. Then, we compare the source code of the

target smart contracts and the similar smart contracts to extract

the differentiated code. At last, we recommend the differen-

tiated code to the target smart contract, which might be used

to support the update of the target smart contract. The case

260

2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC)

978-1-7281-1519-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICPC.2019.00045

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on November 20,2020 at 12:22:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Overall framework of the smart contract update supporting

study shows that the differentiated code we recommended can

exactly match the code change in evolving versions of 42 smart

contracts. The encouraging experimental results demonstrated

that the differentiated code can effectively support smart

contract update.

The rest of this paper is organized as follows. Section 2

introduces blockchain and smart contract. Section 3 presents

the overall framework, while Section 4 describes the main

method of smart contracts syntax and semantic similarities

analysis. The differentiated code recommendation is discussed

in Section 5. Section 6 describes the case study. Section

7 presents the threats to validity. Section 8 overviews the

related works. Section 9 summarizes our approach and outlines

directions for future studies.

II. BLOCKCHAIN AND SMART CONTRACT

Blockchain was first introduced by Satoshi Nakamoto in

2008 as the underlying data structure of Bitcoin [1]. As its

name suggested, a blockchain is a chain of blocks, in which

each block contains a number of transactions which are hashed

in a Merkle Tree [14]. By storing the hash value of the

previous block, each block refers to its previous block, forming

a chain structure. Together with peer-to-peer communication,

consensus between miners such as Proof of Work (PoW),

asymmetric encryption and digital signature, a blockchain

system can provide a temper-proof and immutable value-

transfer network without relying on a trusted third party[15].

Hence, many people think blockchain tends to be another

technology revaluation of the Internet, due to its unique

security, trustworthiness and reliability [16].

In order to make blockchain suitable for more scenar-

ios other than cryptocurrency, Ethereum, a blockchain plat-

form, introduced smart contract which can be constructed

with turing-complete programming languages such as Solidity

(Solidity1 is a contract-oriented, high-level language whose

syntax is similar to that of JavaScript). Smart contracts are

self-executing contracts where the terms of the agreement

between multiple parties are directly written into lines of code

[17]. The code and the agreements contained therein exist

across a blockchain network. By developing different types of

smart contracts, Ethereum can facilitate the construction and

1http://solidity.readthedocs.io/en/develop

execution of complex applications such as financial exchanges,

game, social and insurance contracts on the blockchain.

Any user can create a smart contract by publishing a

transaction to a blockchain. It takes three steps to create a

smart contract based on Ethereum [18]: 1) write the smart

contract source code in a high-level language; 2) compile the

source code into bytecode using the EVM2 compiler; and

3) upload the bytecode to the blockchain with an Ethereum

client. The behavior of the smart contract is determined by

the publisher while receiving a message. Smart contract can

read and write stored files, send messages to other users or

contracts. It can also deposit currency into the account balance

or send it to other users or contracts.

Once a smart contract’s program code has been deployed on

the blockchain, it cannot be changed. As a result, to update

the functionality of a smart contract, the developers usually

make changes to the original contract code (similar to the

software incremental development) in an off-line way, and then

redeploy the contract on the blockchain. Note that, each time

the smart contract is modified, a new smart contract has to be

deployed, and the original smart contract cannot be overwritten

by the new one. Then, there may be multiple versions for a

smart contract existing on the blockchain.

III. OVERALL FRAMEWORK

Figure 1 shows the overall framework of the proposed

approach. The framework includes two phases: smart contract

similarity analysis phase and differentiated code recommen-

dation phase. In the similarity analysis phase, our goal is to

measure the similarity between smart contracts via the syntax

and semantic analysis. In the differentiated code recommen-

dation phase, we discover the similar smart contracts to the

target one, and extract the differentiated code from the similar

smart contracts in the ranking list to support the update of the

target smart contract.

Our framework firstly extracts the syntax tokens and i-

dentifiers from the source code of smart contracts; next, our

approach extracts the code syntactic information from the

code syntax tokens and extracts semantic information from

2a decentralized Turing-complete virtual machine provided by Ethereum,
which can execute smart contract using an international network of public
nodes.

261

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on November 20,2020 at 12:22:32 UTC from IEEE Xplore. Restrictions apply.

the code identifiers, respectively. In this paper, we employ

an abstract syntax tree parser (i.e., AST parser) [19], [20]

to obtain the code syntactic information, and uses word

embedding technique to model the code semantic information.

The similarity between two smart contracts is measured by the

weighted value of code syntactic and semantic similarities.

After the similarity calculation method is constructed, in

the differentiated code recommendation step, we retrieve the

similar smart contracts to the target smart contract to generate

a ranking list according to the similarities. Then, the differen-

tiated code between the target smart contract and the similar

smart contracts is extracted, which is recommended to support

the update of target smart contract.

IV. SMART CONTRACTS SIMILARITY ANALYSIS

A. Syntax Similarity Analysis

In fact, detecting the similar smart contracts is a code clone

detection problem [21], [22]. There are many ways to detect

code clone. One of the representative methods is to compare

the similarity of abstract syntax trees of the source code of

smart contracts, namely, tree-based method [23]. This method

firstly calculates the subtrees’ similarity, and then calculates

entire trees’ similarity. The tree-based method can achieve a

exponential time complexity [24], which is not suitable for

using in our scenario.

The second representative method to detect code clone is

based on the token sequences of code fragments, which is

called token-based method [25]. This method firstly generates

token for each code line, and then calculates the syntax

similarity by finding a longest matched token sequence of

two code fragments. The token-based method achieves a time

complexity of O(n×m) [25], and we apply it to calculate the

code syntax similarity in this paper.

Code Tokenizing. To obtain code syntax structure of a smart

contract, we should identify the syntax of each code line

containing in the smart contract. In this paper, code syntax

is subdivided into 90 types (e.g., MappingExpression, Modi-
fierDeclaration, IfStatement, ForStatement, AssignmentExpres-
sion, ReturnStatement, etc). Our algorithm parses abstract

syntax tree to obtain the syntactic types of each code line.

It’s worth noting that a single code line may contain multiple

syntax types. For example, a if code line “if(_to ==
address(this))” contains 3 syntax types: IfStatement,
BinaryExpression, and CallExpression.

Hash Sequence. For the source code coming from two smart

contracts, we use the tokens to mark each code line, and each

type of token corresponds to an unique hash value (10 digits).

If a code line contains multiple types of tokens, the hash values

corresponding to the tokens of the code line are added together

to generate a new unique hash value. After that, each code

line maps to a hash value, and the source code of a smart

contract corresponds to a hash sequence. Then, we utilize the

hash sequences of the source code of two smart contracts to

calculate their syntactic similarity.

Matching Algorithm. For two hash sequences coming from

pair of smart contracts, our goal is to find the longest matching

subsequence from these two hash sequences, and the longest

matching subsequence is used to measure their syntactic

similarity. We employ the algorithm proposed by Wettel et

al. [25] to look for the longest matching subsequence, while

the difference is that we use abstract syntax tree to parse the

code elements for obtaining the tokenization in this paper,

and Wettel et al. use regular expressions to identify the code

elements.

Algorithm 1: Syntax Matching Algorithm
Input: HashList1: hash sequence 1 from contract Cn;

HashList2: hash sequence 2 from contract Cm;
Output: SyntaxSimilarity
Begin
1: For i = 0 to HashList1.size do:
2: For j = 0 to HashList2.size do:
3: If (HashList1.get(i) == HashList2.get(j)) do:
4: M[i,j] = 1;
5: End If
6: End For
7: End For
8: Foreach M[n,m] do:
9: While (true) do:
10: If(M[n,m] == 1) do:
11: subseqt .add(M[n,m])
12: n = n + 1;
13: m = m + 1;
14: remove(M[n,m]);
15: Else:
16: break;
17: End If
18: End While
19: End Foreach
20: Foreach subseqt do:
21: While (true) do:
22: If gap(subseqt , subseqt+1) < η do:
23: subseqt = link(subseqt , subseqt+1);
24: t = t + 1;
25: remove(subseqt+1);
26: Else:
27: break;
28: End If
29: End While
30: End Foreach

31: SyntaxSimilarity =
max length{subseq1,subseq2,...,subseqt}

max size{HashList1,HashList2}
32: Return SyntaxSimilarity;
End

As shown in Algorithm 1, there are 4 steps in the matching

algorithm. Firstly, we compare every hash in hash sequence

1 with every hash in hash sequence 2. We use a matrix M
to store the result, and every matrix cell M[i,j] stores the

result of the comparison between the relevant hash i and

the relevant hash j. M[i,j] = 1 means the relevant hashes are

matched (i.e., identical). Secondly, we look for the matched

cells from upper left corner of the matrix. From the first

matched cell, we will further extend up to the first unmatched

cell on the main diagonal direction. The continuously matched

cells form a subsequence. We continue to find out all of the

subsequences in the matrix. Thirdly, we check the gap between

any two subsequences in the matrix. If the gap is less than

a specific threshold η , we link these two subsequences to

form a longer one. In the same manner the gap checking is

repeated until we traverse all subsequences, then we can find

a longest subsequences at last. Fourthly, dividing the length of

262

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on November 20,2020 at 12:22:32 UTC from IEEE Xplore. Restrictions apply.

the longest subsequences by the max length of hash sequence

1 and hash sequence 2 is the syntactic similarity. It’s worth

noting that because the matrix is symmetric, we can work with

only one half of the matrix to find the longest subsequence.

B. Semantic Similarity Analysis

Code syntax can catch the program similarity from a

perspective of program logic, while code semantic can intu-

itionally catch the program similarity from the word-choices

of the source code [26]. For example, if the identifiers of

a code line contain the word ’withdraw’, this code line

probably implements the withdrawing functionality. Therefore,

to evaluate how similar of two smart contracts, we can analyze

their semantic similarity via analyzing the word-choices of two

smart contracts.

Code Preprocessing. The source code of smart contract is

represented by a set of significative words, punctuation and

operational symbols, and we can regard the source code of

smart contract as text document. However, the text document

is different from normal one, which is not formed by sentences

but a set of random words and symbols. Therefore, we cannot

employ the method in [27] to firstly calculate the semantic

similarity of sentences, and then calculate the semantic simi-

larity of two text documents. Instead, we use word embeddings

[28] to vectorize each significative word, and then calculate the

semantic similarity of two smart contracts.

Obviously, not all the words in the source code of a

smart contract play a positive role for the semantic similarity

analysis, some original words may weaken the code semantic.

Therefore, a series of preprocess rules are applied: 1) split the

camel-case words into single words, such as: ’giveRightVote’ is

divided into ’give’, ’right’ and ’vote’. 2) filter out the function

words in the source code, such as: ’and’, ’the’, ’an’, etc.

3) filter out the keywords of Solidity, such as: ’mapping’,

’public’, ’function’, ’if ’, ’modifier’, ’for’, etc. 4) filter out the

letters sequence which does not denote a word, such as: ’tttt’,
’hhhk’, ’kkkk’, etc.

Word embeddings are unsupervised word representations

that only require large amounts of unlabeled text to learn [28].

In this work, we collect the source code of smart contract as

software engineering text. To reduce the amount of vocabulary

in the entire corpus. First, we apply the stem segmentation

technique. Because English verbs may appear in different

tenses, such as past tense, future tense, and perfect tense, we

transformed verbs of different tenses into their original forms.

Secondly, we filtered out words that appeared fewer than three

times in the entire corpus.

Code Vectorization. To obtain the vector representation of a

word, we used the continuous skip-gram model to learn the

word embedding of a central word (i.e., wi) [28]. It is well

known that the required word embedding is an intermediate

result of the continuous skip-gram model. Continuous skip-

gram is effective at predicting the surrounding words in

a context window of 2k+1 words (generally, k=2, and the

window size is 5). The objective function of the skip-gram

model aims at maximizing the sum of log probabilities of the

surrounding context words conditioned on the central word

[28]:

n

∑
i=1

∑
−k≤ j≤k, j �=0

log p(wi+ j|wi) (1)

where wi and wi+ j denote the central word and the contex-

t word, respectively, in a context window of length 2k+1

and n denotes the length of the word sequence. The term

log p(wi+ j|wi) is the conditional probability, defined using the

softmax function:

log p(wi+ j|wi) =
exp(v

′T
wi+ j

vwi)

∑w∈W exp(v′Tw vwi)
(2)

where vw and v
′
w are the input and output vectors of a word

w in the underlying neural model, and W is the vocabulary

of all words. Intuitively, p(wi+ j|wi) estimates the normalized

probability of a word wi+ j appearing in the context of a central

word wi over all words in the vocabulary. Here, we employ

negative sampling method [28] to compute this probability.

After training the model, each word in the corpus is associ-

ated with a vector representation and forms a word dictionary.

To obtain the semantic information of a smart contract, we first

collect their preprocessing identifiers and then determine the

corresponding vector representation of each identifier from the

dictionary. Subsequently, we sum the vectors of all identifiers

in the smart contract dimension by dimension. Then, we can

calculate the semantic similarity of any two smart contracts

via the vetorial angle of their semantic vectors.

C. Similarity Calculation of Smart Contracts

For the given source code of a pair of smart contracts Cn
and Cm, our algorithm analyzes their code syntax to obtain the

hash sequences, and extracts significative words to generate

semantic vectors. After that, we calculate syntax similarity

between the hash sequences of smart contracts Cn and Cm.

Meanwhile, we calculate the semantic similarity between Cn
and Cm. After obtaining the syntax and semantic similarities,

we use equation (3) to calculate a comprehensive similarity.

CompSimi = α ·SyntSimi+β ·SemanSimi, (3)

Where, CompSimi, SyntSimi, and SemanSimi correspond to

comprehensive, syntax, and semantic similarity, respectively;

α plus β equal to 1.0.

V. DIFFERENTIATED CODE RECOMMENDATION

Based on the similarity calculation method, our approach

can retrieve a number of similar smart contracts from the

contract repository for any target smart contract. However,

such an approach could perform a poor retrieval efficiency

given that there are more than 120,000 smart contracts in the

contract repository. Therefore, we can firstly cluster the smart

contracts according to the comprehensive similarities, and then

retrieve the similar contracts from the closer clusters to the

target smart contract, which could significantly improve the

263

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on November 20,2020 at 12:22:32 UTC from IEEE Xplore. Restrictions apply.

retrieval efficiency. Then, we can compare the source code of

similar smart contracts to obtain the code difference, which is

used as differentiated code to support smart contract update.

A. Similar Smart Contracts Clustering

To cluster the similar smart contracts, we employ K-means

clustering [29] in this paper. The main idea behind K-means

clustering is that given a specific parameter K, it will partition

n instances into K clusters, and each instance belongs to the

cluster with nearest mean.

When initializing K-means clustering, we should randomly

select K smart contracts as the cluster center; Then, each smart

contract is assigned to a cluster when the center of the cluster

is closest to the smart contract according to the comprehensive

similarity. After that, it should iteratively update the cluster

center when new smart contracts are added in the cluster.

Finally, when the cluster center remains unchanged, we stop

the iteration.

B. Differentiated Code Extraction

To support the update of a target smart contract, we need to

extract the differentiated code from its similar smart contracts.

Again, we apply the syntax matching algorithm (i.e., Algorith-

m 1) to extract the differentiated code. Specifically, for target

smart contract Cn and its similar smart contract Cm, we can

find the longest matching subsequence in matrix M[i,j]. On

one hand, we can identify the matched code statements of Cn
and Cm according to the longest matching subsequence. On

the other hand, the non-matching code statements of Cn and

Cm can be also identified by removing the matching ones in

the longest matching subsequence in matrix M[i,j].
There are two types of non-matching statements, i.e., state-

ments contained in smart contract Cn, but not in Cm (case 1); or

statements contained in smart contract Cm, but not in Cn (case

2). When we try to use the differentiated code to support the

update of smart contract Cn, the non-matching statements in

case 2 can be used as differentiated code to recommend to

smart contract Cn for updating. In the same manner, the non-

matching statements in case 1 can be used as differentiated

code to support the update of smart contract Cm.

VI. CASE STUDY

A. Dataset

We downloaded 32,537 solidity files from Etherscan3, and

each solidity file contains an average of 3.7 smart contracts

(ranges from 0 to 36). There are a total of 120,389 smart

contracts, which are stored in a local repository. And these

smart contracts were released before March 24, 2018. Table I

shows the statistical characteristics of the dataset.

TABLE I: Statistical characteristics of the dataset

Solidity
Files

of Contract
(Min)

of Contract
(Max) Average Contracts

(Total)
32,537 0 36 3.7 120,389

3https://etherscan.io

B. Research Questions

With the purpose of analyzing our approach’s capability

to recommend differentiated code to support smart contract

update, we would like to answer the following research

questions in our evaluation:

RQ1: Can the recommended differentiated code guide the

developers in updating smart contract?

RQ2: Does the choice of weight values (i.e., α and β)

affect the performance of our approach?

RQ3: What differentiated code can the developers obtain in

the recommended smart contracts?

In whole experiment, our approach is executed on Windows

7, with a quad-core 3.3GHz Intel Core i5 processor and 8GB

memory. The gap parameter η = 3 in whole experiment.

C. Evaluation Criteria

For RQ1, we want to evaluate whether the differentiated

code in recommended smart contract can help developers in

updating smart contract. To achieve this goal, we firstly collect

the smart contracts with two versions (the earlier-released

version is called target smart contract, and the later-released

version is called evolving smart contract) in the dataset, and

then apply the proposed method to recommend a number of

similar smart contracts (called recommended smart contract)

for the target smart contract. Finally, we determine whether the

recommended smart contracts and the evolving smart contract

involve the same code change (i.e., differentiated code) when

comparing with the target smart contract. If this is true, it

can prove that the recommended smart contract can be used

to guide future update of the target smart contract, as the

code change in recommended smart contract is consistent with

the ones in evolving version of the target smart contract. To

identify whether a smart contract has two versions, we require

the two smart contracts should be in the same account (i.e.,

released by the same author), in addition, we also require the

similarity of these two smart contracts is equal to or greater

than 0.7. If both of the two conditions are met, the smart

contract is regarded as having two versions.

For RQ2, we want to evaluate whether there is a tradeoff

between α and β that can make the proposed method get

a best result. To achieve this goal, we propose a parameter

optimization method. Specifically, for each target smart con-

tract in RQ1, the goal of our parameter optimization method

is to improve the ranks of the recommended smart contracts

in the recommendation list via gradually adjusting the values

of α and β . Because only when the recommended smart

contract appears in the top of the recommendation list, it

means our algorithm works well and can further effectively

provide reference for the developers.

For RQ3, we try to conduct a quantitative analysis on

the recommended smart contracts, and we want to see what

differentiated code the developers can obtain in the recom-

mended smart contracts, and further to determine whether the

differentiated knowledge can be used to assist developers in

version updating. To achieve this goal, we empirically analyze

264

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on November 20,2020 at 12:22:32 UTC from IEEE Xplore. Restrictions apply.

and classify the differentiated code in the recommended smart

contracts.

D. Results Analysis

1) RQ1: We found that a total number of 42 smart con-

tracts have two versions. Due to the space limitation, Table

II shows the information of part of the smart contracts. The

Name column in Table II represents the contract name; The

Address column represents the address of the smart contract in

the blockchain. The Address consisted of a 40-bit hexadecimal

number, also due to the space limitation, we only retained its

first 5-bit in the Table II. The Block Height column represents

the height of the block that current smart contract locates

in. The Simi column represents the code similarity between

target smart contract and recommended smart contract (or

target smart contract and evolving smart contract), and Rank
column represents the similarity rank of the recommended

smart contract in the recommended list via applying the

proposed method.

For a target smart contract, it may have the same name with

its recommended smart contract and evolving smart contract,

as the fist target smart contract (i.e., Owned in Table II) shows.

It is worth noting that although the target smart contract and

the recommended smart contract have the same name, they are

created by different accounts. Therefore, the contract (Owned,

with address 0x492a4) can be used as a recommended smart

contract for the target smart contract (Owned, with address

0x2561b). In some cases, the target smart contract and its

evolving smart contract have different names, as the second

target smart contract (i.e., Owned) shows. We can determine

the contract Owned is an evolving version of contract Managed

because they are created by the same account and with

a higher code similarity (i.e., 0.94). Moreover, the release

time of contracts Owned and Managed can also confirm

this fact, because the higher the block height, the later the

contract releasing. Thus contract Owned is released later than

contract Managed. Similarly, we require that the release time

of recommended smart contract should be earlier than that of

target smart contract. Because the developer of a target smart

contract can only obtain reference from the smart contract that

previously released.

In Table II, we can observe that there are some target smart

contracts with overlapping name, i.e., the first and the last

target smart contracts, the 3rd and 5th smart contracts, the 4th
and 13th, 14th smart contracts. Although these smart contracts

have same name, they are created by different accounts and

have different addresses. More importantly, they are different

in source code. For example, we compare source code of

the first and the last smart contracts, and find that the code

similarity of these two smart contracts is less than 40%. Then,

when applying the proposed approach to retrieve similar smart

contracts for them, the obtained recommended smart contracts

are also different.

We conclude RQ1 that the recommended smart contracts

of 42 target smart contracts are as same as their evolving

smart contracts, and this finding enables developer employ

the proposed approach to retrieve similar contracts to aid their

smart contract update in practice development.

2) RQ2: In smart contract recommendation, we employ

code syntactic and semantic information to measure the code

similarity between smart contracts. We compute the compre-

hensive similarity according to Equation (3). To tune the best

values of α and β , we gradually increase their values from

0.1 to 0.9 (every time we increase threshold by 0.1). And we

should make sure that α + β = 1 in every iteration. Our goal

is to find a pair of α and β resulting in the best ranks of the

recommended smart contracts in the recommendation list.

Fig. 2: The effect of weight values

Figure 2 presents the detailed information to estimate the

values of α and β . The vertical axis shows the total rank of the

42 recommended smart contracts when applying the proposed

method, and the horizontal axis shows the value pairs of α
and β . For example, (0.1, 0.9) represents the value of α equals

0.1 and β equals 0.9. We can observe that the total rank of

recommended smart contracts is improve with α incrementally

increasing. When α equals 0.9 and β equals 0.1, the total rank

of recommended smart contracts achieves a best result in the

recommendation list. This result indicates that the code syntax

plays a dominant role in contract similarity calculation.

TABLE III: The comparison of different metrics

Metrics Sum
Ranks

Average
Ranks

Semantic 172 4.1
Syntax 148 3.5

Syntax+Semantic
(α =0.9, β = 0.1)

144 3.4

Table III shows the comparison of applying different metrics

to measure the code similarity. When we only apply semantic

information to calculate the code similarity, the recommended

smart contracts can obtain a total rank of 172, and an aver-

age of 4.1; When we apply syntactic information alone, the

recommended smart contracts can obtain a total rank of 148,

and an average of 3.5. When we combine these two metrics

with a weight values of 0.9 and 0.1, the recommended smart

contracts get a best total rank of 144, and an average of 3.4.

We conclude RQ2 that a combination of syntactic and

semantic information with weight values of 0.9 and 0.1 can

265

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on November 20,2020 at 12:22:32 UTC from IEEE Xplore. Restrictions apply.

TABLE II: The results of RQ1

No.
Target Smart Contracts Recommended Smart Contracts Evolving Smart Contracts

Name Address Block
Height Name Address Block

Height Simi Rank Name Address Block
Height Simi

1 Owned 0x2561b 4886545 Owned 0x492a4 4704537 0.83 1 Owned 0x14b0d 4887631 0.83

2 ERC20 0x6c4fe 4928600 ABTokenBase 0x007e7 4547466 0.89 2 ERC20 0x01b84 5168599 0.89

3 Token 0x759a5 4538168 Token 0x273f5 4494277 0.8 3 Token 0x5d113 4627084 0.8

4 ERC20 0x37bda 4551394 ABTokenBase 0x007e7 4547466 0.73 3 ERC20 0x1dfa4 4685008 0.73

5 USDGOLD 0x00755 4879124 FireLottoToken 0x04939 4713248 0.87 2 ILoveYou 0xaeda4 4981202 0.87

6 FengShuiCoin 0x0661f 5158332 PI 0x69124 4649999 0.78 4 FSRatCoin 0x5ab63 5158430 0.78

7 BRM 0xd7732 5231383 MOT 0x263c6 4753082 0.82 1 BRM 0x61d16 5239862 0.82

8 AbstractToken 0xc25c2 4967169 ERC20 0x003f7 4508340 0.89 1 ERC20 0x15adb 4971923 0.89

9 ERC20Basic 0x6c4fe 4928600 ERC20Basic 0x0056A 4791096 0.8 1 ERC20Basic 0x01b84 5168599 0.8

10 VenusERC20 0xa723c 4837227 ELYTE 0x05d37 4506864 0.84 7 VenusToken 0x1e4e3 4846201 0.84

11 BIGCToken 0xa6768 4823807 TokenERC20 0x0445a 4526508 0.81 2 BIGCToken 0x574fa 4824268 0.81

12 Token 0x419ca 4209736 ERC20 0x01b6f 4135914 0.75 3 ERC20 0x661Eb 4163888 0.75

13 Token 0xbca13 4140369 ERC20Token 0x03698 3982761 0.8 1 Token 0xc14b3 4177015 0.8

14 Owned 0xd32c2 4424760 Managed 0x259b0 4343542 0.94 1 Managed 0x9a9f1 4430409 0.94

make the recommended smart contracts get the best ranks.

Therefore, we use α = 0.9 and β = 0.1 as default values in

this study.
3) RQ3: We conduct an empirical analysis on the recom-

mended smart contracts, and try to see what differentiated code

the developers can obtain in the recommended smart contracts.

Table IV shows 10 types of differentiated code on the 42

recommended smart contracts, where the red font indicates

the differentiated code. It is worth noting that a recommended

smart contract may involve more than one differentiated code

for a target smart contract.

The first kind of differentiated code is Events. Events

are similar to the logging operation in object oriented pro-

gramming languages such as Java, which is convenience

interfaces with the EVM logging facilities. Events are a

common programming practice of practical importance to

collect EVM runtime information, as they can be used for

assisting postmortem analysis [30]. In some cases, developers

forget to insert Events to record the key runtime information of

EVM, which may significantly increase the difficulty in failure

diagnosis. In this sense, the differentiated code recommended

by our method is an important reference for developers to add

Events.

Another kind of differentiated code is the self-destruct func-

tion. Self-destruct function can end current execution. More

importantly, self-destruct function can destroy current contract

and send funds to a designated account. Therefore, when our

method recommends the self-destruct function to the target

smart contracts, it can not only enhance the controllability of

the smart contracts’ life cycle, but also increase the flexibility

of the smart contracts.

The third kind of differentiated code is the Modifier. Modifi-

er can be used to easily change the behaviour of functions, and

they can automatically check a condition prior to execute the

function. For example, the case 3 in Table IV shows that the

Modifier requires owner is msg.sender, if so, the smart

contract executes the function that references the Modifier; if

not, the smart contract throws an exception. Therefore, the

Modifier recommended to the target smart contracts plays an

important role to restrict access authority of the function in

this case.

Another kind of differentiated code is rollback function

optimization. Case 4 in Table IV shows that the throw is

used in the target smart contract, while the revert() is used

in the recommended smart contract. The throw can roll back

all state changes, but consume the remaining gas; In contrast,

revert() can also roll back all state changes, but return

remaining gas to the caller. In this sense, revert() is more

user friendly, which is an optimized rollback function.

The fifth kind of differentiated code is the condition

strengthening. Case 5 in Table IV shows that when satisfying

the additional condition of “allowTransfer == true”,

the if statement can be executed. This operation strengthens

condition of the if statement, and can also help to avoid

program vulnerability.

The next 3 differentiated code (i.e., from case 6 to 8)

can be classified as code refactoring. For example, case 6

abstracts some program functions as parent contract Iowned,

and then Owned inherits from Iowned. Case 7 changes the

initial value of variable totalSupply. Case 6 adds the

keyword indexed to modify the variables _prevOwner and

_newOwner, which makes the variables indexable.

The rest of two differentiated code are regarding variable

declaration and function declaration. These two cases recom-

mend some variables and functions to the original target smart

contracts, and these variables and functions act different roles

in the smart contracts, hence we cannot classify them more

finer-grained. It should be noted that the self-destruct function

(case 2) and Modifier (case 3) are not included in the function

declaration (case 10).

We conclude RQ3 that most of the differentiated code

recommended by our method are useful for developers to

update their smart contracts. The differentiated code range

from Events, self-destruct function, Modifier to Rollback

function, etc. These differentiated code can help the updated

smart contracts increase the maintainability (e.g., Events),

flexibility (e.g., self-destruct function), controllability of func-

tion behaviour (e.g., Modifier), user-friendliness (e.g., rollback

function), reasonableness of code structure (e.g., case 6 to 8),

etc.

266

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on November 20,2020 at 12:22:32 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Examples of differentiated code

ID Code snippets in target smart contracts Code snippets in recommended smart contracts Descriptions Amount

1

function OpportyToken() public {
totalSupply = INITIAL SUPPLY;
balances[msg.sender] = INITIAL SUPPLY;

}

function OpportyToken() public {
totalSupply = INITIAL SUPPLY;
balances[msg.sender] = INITIAL SUPPLY;
Transfer(0x0, msg.sender, INITIAL SUPPLY);

}

Events 5

2
function closedown() onlyOwner {

selfdestruct(owner);
}

Self-destruct
function

3

3

modifier onlyOwner() {
require(msg.sender == owner);

;
}

Modifier 7

4
function () public payable {

throw;
}

function () public payable {
revert();

}
Rollback function

optimization
3

5
if (balances[msg.sender] >= value &&
value > 0)

if (balances[msg.sender] >= value && value >
0 && allowTransfer == true)

Condition
strengthening

5

6 contract Owned contract Owned is Iowned
Parent contract

declaration
3

7 totalSupply = initialSupply; totalSupply = initialSupply * 10 ** uint256(decimals);
Initialization

change
3

8
event OwnerUpdate(address prevOwner,
address newOwner);

event OwnerUpdate(address indexed prevOwner,
address indexed newOwner);

Parameter type
adding

4

9
address public constant multisig = 0x0;
uint public constant PRICE = 8000;

Variable
declaration

11

10

function burn(uint256 value) public returns
(bool success) {

require(balanceOf[msg.sender] >= value);
... }

Function
declaration

6

*The red font indicates the differentiated code.

E. Cluster Analysis

To further understand the effectiveness of our approach to

support the smart contract update, we empirically study the

clusters of smart contracts described in Section V.

Considering there are more than 120,000 smart contracts

in the repository, we set the number of clusters of K-means

as 6,000, i.e., K = 6,000. In addition, we require that when

the similarity between a smart contract and the center smart

contract of a cluster is greater than 0.6, the smart contract is

allowed to add to the cluster. This is done to ensure that the

smart contracts in the same cluster have a higher similarity.

However, this constraint may lead some smart contracts not

belonging to any cluster.

Fig. 3: The first 600 smart contract clusters

Figure 3 shows the first 600 clusters according to the

number of smart contracts belonging to them. We can observe

from the clusters that the largest number of cluster contains

2894 similar smart contracts, and the least number of cluster

contains 2 similar smart contracts. There are 15,800 smart

contracts that do not belong to any cluster. The result means

that the remaining smart contracts (i.e., more than 104,000)

can find at least one similar smart contract from the repository.

This is an evidence that most of the smart contracts are similar

in the dataset, and they share lots of code with similar syntax

and semantics.

To further understand why there are so many similar smart

contracts, we manually analyze the smart contracts in same

cluster. The top reason causing the similar smart contracts

is the implementation of the same “interface”. For example,

to achieve the “issue currency”, the corresponding smart

contracts should implement the “interface” of ERC20 4. As

a result, all the smart contracts with the “issue currency”

function have similar source code.

The second reason causing the similar smart contracts is

the code reuse. Because many smart contracts on the Ethereum

are open source, and developers can retrieve smart contracts on

demand and do custom development based on the source code

of the existing smart contracts. At present smart contract can

only be used in a few limited fields, such as finance, game and

social. The smart contracts in same field usually implement

similar functionalities. For example, the finance-related smart

contracts have the common functionalities, such as: transfer,

allowance, and approve, etc. Then, developers can largely

reuse the existing smart contracts for custom development in

same field, which makes many smart contracts keep small code

differences on the Ethereum.

Due to lots of similar smart contracts existing in the

repository, our method can successfully retrieve similar smart

4A standard interface for tokens. https://eips.ethereum.org/EIPS/eip-20

267

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on November 20,2020 at 12:22:32 UTC from IEEE Xplore. Restrictions apply.

contracts for a target smart contract in most cases, and further

to extract the differentiated code from the similar smart

contracts to support the update of the target smart contract.

VII. THREATS TO VALIDITY

In this section we focus on the threats that could affect

the results of our case studies. The main threat to validity is

the scale of the dataset. Since we need to extract the syntax

and sematic information from smart contract, it requires all

collected smart contracts should be open-source. Then, we

have collected 32,537 solidity files from Etherscan, and these

solidity files include 120,389 open-source smart contracts in

total. However, it needs to note that these open source smart

contracts represent only a small part of the contracts on

Ethereum, and most of the contracts on Ethereum are non-open

source. In the future, we need to constantly crawl new open-

source smart contracts from Etherscan to extend our repository.

Another threat to validity is the suitability of our evaluation

measure. We use a new measure to evaluate the effectiveness

of the proposed approach in this paper, which is different

from traditional one. We propose the definitions of target,

recommended, and evolving smart contracts. We use the rec-

ommended smart contract as a recommendation to the target

smart contract, and the recommended smart contract should

be the same with the later version of the target smart contract,

i.e, its evolving smart contract. Such a setting demonstrates

that the smart contract we recommend to developers (i.e., rec-

ommended smart contract) is a valid reference for developers

when they try to update the target smart contract, because the

developers will do the same update in the later version of

the target smart contract (i.e., evolving smart contract). Thus,

we believe there is little threat to suitability of our evaluation

measure.

The last threat to validity is the generalizability of our

results. We have recommended smart contracts to the target

smart contracts in this paper. All of these smart contracts are

written by Solidity language. When applying our approach to

the smart contracts written by other programming languages,

such as Serpent, Mutan, LLL, etc., some particular code syntax

should be carefully handled when extracting the code syntax.

In the future, further investigation by analyzing even more

smart contracts written by other programming languages is

needed to mitigate this threat.

VIII. RELATED WORK

Smart contracts are applied in various domains, which have

been studied by many researchers from various perspectives,

such as concurrent programming [31], [32], security [33], [34],

[35], [36] and scheme [18], [37]. The most related work to this

study are the ones that assist programmers in smart contract

development.

To facilitate collaborative development of smart contract, He

et al. [11] proposed SPESC, a specification language for smart

contracts development. SPESC enables users to specify a smart

contract in a similar form to a real-world contract, in which

the obligations and rights of parties and the transaction rules

of cryptocurrencies are clearly defined. In addition, SPESC

can derive a program skeleton (or a program interface) in

accordance with the contract terms and the account balance.

Their preliminary study results demonstrate that SPESC can

be easily learned and understood by both IT and non-IT users.
Frantz et al. [12] proposed a modeling approach that

supports the semi-automated translation of human-readable

contract representations into computational equivalents. They

adapted ADICO [38] for modeling smart contracts. From

ADICO-based models, they also developed a code generator

to derive partial source code. The ADICO format can specify

a party’s obligations and rights.
Chen et al. [39] conducted an investigation on smart con-

tract and revealed the gas-costly programming patterns. They

identified 7 gas-costly patterns, and divided them into 2 cate-

gories: useless-code related patterns, and loop-related patterns.

They proposed and developed GASPER tool to discover gas-

costly patterns in smart contract automatically, which can

help programmers locate 3 representative patterns in practice

development.
Porru et al. [40] identified many challenges for blockchain-

oriented software engineering, focusing on collaboration a-

mong large teams, testing activities, and specialized tools for

the creation of smart contracts. Their study proposed new

directions for the blockchain-oriented software engineering.
Different from the mentioned studies, we are among the

first to propose the differentiated code for smart contract

development at code level. Differentiated code play a role

of illustrating how a software feature is implemented and a

programming issue is solved, hence the differentiated code

can be reused by the programmers who want to update their

smart contracts in the next version.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we propose an approach to automatically

support the update of a smart contract. For a target smart

contract, our method discovers the similar smart contracts in

the repository based on calculating their code syntax and se-

mantic similarities, and then our method extracts differentiated

code from the similar smart contracts to support the update of

the target smart contract. The experiment results show that

the recommended smart contracts of 42 target smart contracts

are as same as their evolving smart contracts by applying the

proposed method. To improve the effectiveness of the proposed

approach, we tune the weight values of α and β with 0.9

and 0.1. Besides, we analyze the differentiated code that the

developers obtain in the recommended smart contracts.
Some efforts are in progress. One future research work

mainly focuses on the expansion of the smart contract repos-

itory. Although our repository has saved more than 120,000

contracts until now, it is far from enough. We will further

crawl more smart contracts to extend the repository.

ACKNOWLEDGMENT

This research is supported by the National Key R&D Pro-

gram of China (2018YFB1004804), the National Natural Sci-

ence Foundation of China (61672545, 61722214, U1811462),

268

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on November 20,2020 at 12:22:32 UTC from IEEE Xplore. Restrictions apply.

the Guangdong Province Universities and Colleges Pearl

River Scholar Funded Scheme (2016) and the Program for

Guangdong Introducing Innovative and Entrepreneurial Team-

s (2016ZT06D211), China Postdoctoral Science Foundation

(2018M640855).

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Cryp-
tography Mailing list at https://metzdowd.com, 03 2009.

[2] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang,
“Untangling blockchain: A data processing view of blockchain systems,”
IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 7,
pp. 1366–1385, July 2018.

[3] P. Zheng, Z. Zheng, X. Luo, X. Chen, and X. Liu, “A detailed and real-
time performance monitoring framework for blockchain systems,” in
International Conference on Software Engineering Software Engineering
in Practice - ICSE-SEIP ’18, 05 2018, pp. 134–143.

[4] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future trends,” in
2017 IEEE International Congress on Big Data (BigData Congress),
June 2017, pp. 557–564.

[5] S. Nick, “The idea of smart contracts (1997),” http://www.fon.
hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Liter
ature/LOTwinterschool2006/szabo.best.vwh.net/idea.html, 2008.

[6] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the internet of things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[7] A. Juels, A. Kosba, and E. Shi, “The ring of gyges: Investigating the
future of criminal smart contracts,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’16. New York, NY, USA: ACM, 2016, pp. 283–295. [Online].
Available: http://doi.acm.org/10.1145/2976749.2978362

[8] A. Norta, “Creation of smart-contracting collaborations for decentralized
autonomous organizations,” in Perspectives in Business Informatics
Research. Cham: Springer International Publishing, 2015, pp. 3–17.

[9] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: ACM, 2016, pp. 254–269. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978309

[10] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining
strategies in bitcoin,” vol. 9603 LNCS, Christ Church, Barbados, 2017,
pp. 515 – 532.

[11] X. He, B. Qin, Y. Zhu, X. Chen, and Y. Liu, “Spesc: A specification
language for smart contracts,” in 2018 IEEE 42nd Annual Computer
Software and Applications Conference (COMPSAC), vol. 01, July 2018,
pp. 132–137.

[12] C. K. Frantz and M. Nowostawski, “From institutions to code: Towards
automated generation of smart contracts,” in 2016 IEEE 1st International
Workshops on Foundations and Applications of Self* Systems (FAS*W),
Sept 2016, pp. 210–215.

[13] Y. Huang, X. Chen, Z. Liu, X. Luo, and Z. Zheng, “Using
discriminative feature in software entities for relevance identification
of code changes,” Journal of Software: Evolution and Process,
vol. 29, no. 7, p. e1859, 2017, e1859 smr.1859. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1859

[14] R. C. Merkle, “Protocols for public key cryptosystems,” in 1980 IEEE
Symposium on Security and Privacy, April 1980, pp. 122–122.

[15] M. Swan, Blockchain: Blueprint for a New Economy, 1st ed. O’Reilly
Media, Inc., 2015.

[16] B. Wang, S. Chen, L. Yao, B. Liu, X. Xu, and L. Zhu, “A simulation
approach for studying behavior and quality of blockchain networks,” in
Blockchain – ICBC 2018. Cham: Springer International Publishing,
2018, pp. 18–31.

[17] R. M. Parizi, Amritraj, and A. Dehghantanha, “Smart contract program-
ming languages on blockchains: An empirical evaluation of usability and
security,” in Blockchain – ICBC 2018. Cham: Springer International
Publishing, 2018, pp. 75–91.

[18] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou, “Detecting
ponzi schemes on ethereum: Towards healthier blockchain technology,”
in Proceedings of the 2018 World Wide Web Conference, ser. WWW
’18. Republic and Canton of Geneva, Switzerland: International World

Wide Web Conferences Steering Committee, 2018, pp. 1409–1418.
[Online]. Available: https://doi.org/10.1145/3178876.3186046

[19] Y. Huang, Q. Zheng, X. Chen, Y. Xiong, Z. Liu, and X. Luo, “Mining
version control system for automatically generating commit comment,”
in 2017 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), Nov 2017, pp. 414–423.

[20] Y. Huang, N. Jia, X. Chen, K. Hong, and Z. Zheng, “Salient-
class location: Help developers understand code change in code
review,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: ACM, 2018, pp. 770–774. [Online]. Available:
http://doi.acm.org/10.1145/3236024.3264841

[21] R. Yue, Z. Gao, N. Meng, Y. Xiong, X. Wang, and J. D. Morgenthaler,
“Automatic clone recommendation for refactoring based on the present
and the past,” in 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Sep. 2018, pp. 115–126.

[22] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping
program repair space with existing patches and similar code,” in
Proceedings of the 27th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2018. New
York, NY, USA: ACM, 2018, pp. 298–309. [Online]. Available:
http://doi.acm.org/10.1145/3213846.3213871

[23] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier,
“Clone detection using abstract syntax trees,” in Proceedings of the
International Conference on Software Maintenance, ser. ICSM ’98.
Washington, DC, USA: IEEE Computer Society, 1998, pp. 368–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=850947.853341

[24] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Sci. Comput. Program., vol. 74, no. 7, pp. 470–495, May 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.scico.2009.02.007

[25] R. Wettel and R. Marinescu, “Archeology of code duplication: recover-
ing duplication chains from small duplication fragments,” in Seventh
International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC’05), Sept 2005, p. 8.

[26] Y. Huang, N. Jia, Q. Zhou, X. Chen, Y. Xiong, and X. Luo,
“Guiding developers to make informative commenting decisions in
source code,” in Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, ser. ICSE ’18.
New York, NY, USA: ACM, 2018, pp. 260–261. [Online]. Available:
http://doi.acm.org/10.1145/3183440.3194960

[27] J. Oliva, J. I. Serrano, M. D. del Castillo, and Á. Iglesias, “Symss:
A syntax-based measure for short-text semantic similarity,” Data &
Knowledge Engineering, vol. 70, no. 4, pp. 390–405, 2011.

[28] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proceedings of the 26th International Conference
on Neural Information Processing Systems, ser. NIPS’13. USA:
Curran Associates Inc., 2013, pp. 3111–3119. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2999792.2999959

[29] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the Royal Statistical Society, vol. 28,
no. 1, pp. 100–108, 1979.

[30] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang,
“Learning to log: Helping developers make informed logging
decisions,” in Proceedings of the 37th International Conference
on Software Engineering - Volume 1, ser. ICSE ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 415–425. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2818754.2818807

[31] L. Yu, W. Tsai, G. Li, Y. Yao, C. Hu, and E. Deng, “Smart-contract
execution with concurrent block building,” in 2017 11th IEEE Sympo-
sium on Service-Oriented System Engineering (SOSE). Los Alamitos,
CA, USA: IEEE Computer Society, apr 2017, pp. 160–167. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/SOSE.2017.33

[32] T. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen, “Adding
concurrency to smart contracts,” in Proceedings of the ACM Symposium
on Principles of Distributed Computing, ser. PODC ’17. New
York, NY, USA: ACM, 2017, pp. 303–312. [Online]. Available:
http://doi.acm.org/10.1145/3087801.3087835

[33] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in 2016 IEEE Symposium on Security and Privacy (SP), May
2016, pp. 839–858.

269

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on November 20,2020 at 12:22:32 UTC from IEEE Xplore. Restrictions apply.

[34] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky,
N. Rinetzky, M. Sagiv, and Y. Zohar, “Online detection of
effectively callback free objects with applications to smart
contracts,” CoRR, vol. abs/1801.04032, 2018. [Online]. Available:
http://arxiv.org/abs/1801.04032

[35] T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M. H. Au, and X. Zhang,
“An adaptive gas cost mechanism for ethereum to defend against under-
priced dos attacks,” in Information Security Practice and Experience,
J. K. Liu and P. Samarati, Eds. Cham: Springer International Publishing,
2017, pp. 3–24.

[36] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in Principles of Security and Trust, M. Maffei
and M. Ryan, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2017, pp. 164–186.

[37] M. Bartoletti, S. Carta, T. Cimoli, and R. Saia, “Dissecting Ponzi
schemes on Ethereum: identification, analysis, and impact,” ArXiv e-
prints, Mar. 2017.

[38] E. Ostrom, “A grammar of institutions,” American Political Science
Review, vol. 89, no. 3, pp. 582–600, 1995.

[39] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts
devour your money,” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), Feb 2017,
pp. 442–446.

[40] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli, “Blockchain-
oriented software engineering: Challenges and new directions,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), May 2017, pp. 169–171.

270

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on November 20,2020 at 12:22:32 UTC from IEEE Xplore. Restrictions apply.

